В состав дермы входят: Что нужно знать о коже?

Автор: | 02.08.1979

Что нужно знать о коже?

Функции кожи


Будучи самым крупным человеческим органом, кожа покрывает площадь, эквивалентную почти 2 квадратным метрам, и может весить до 10 кг. Она служит защитным барьером против внешней среды при сохранении внутреннего гомеостаза.

Общественное значение: внешний вид человека

Защита: защитный барьер против внешней среды, такой как химические или механические повреждения, ультрафиолетовое излучение, а также поддержание гомеостаза в организме

Ощущения: чувствительна к боли, прикосновениям, давлению и температуре

Терморегуляция: терморегуляция путем дилатации, сужения сосудов и потоотделения

Метаболизм: синтез витамина D (метаболизм кальция и фосфата) под влиянием солнечного света

Анатомия кожи


Кожа состоит из двух основных слоев: эпидермиса и дермы, которые находятся на жировом слое, называемым гиподерма (подкожной жировой клетчаткой).

И эпидермис, и дерма, в свою очередь, состоят из подслоев. Область, которая прикрепляет эпидермис к дерме, называется дермо-эпидермальным соединением. Оно отвечает за обмен кислородом, питательными веществами и отходами между васкуляризированной дермой и бессосудистым эпидермисом.

Эпидермис


Эпидермис представляет собой многослойный роговой слой плоских эпителий, размер которого обычно составляет от 0,03 до 0,05 миллиметра. Он в основном состоит из кератиноцитов в прогрессирующих стадиях дифференциации от более глубоких до более поверхностных слоев. Когда кератиноциты делятся, они переходят от более глубоких слоев к более поверхностным слоям. Как только они достигают рогового слоя (самого внешнего слоя), они просачиваются в процессе эпидермального оборота, например: после принятия ванны или возникновения царапин. Этот процесс называется «десквамацией». Полный оборот эпидермиса («обновление кожи») занимает приблизительно 2 месяца.

Дерма

По сравнению с более тонким эпидермисом дерма представляет собой сложную сеть, содержащую клеточные и бесклеточные компоненты. Она содержит кровеносные сосуды, нервы, корни волос и потовые железы. Структурно дерма состоит из двух подслоев, поверхностной папиллярной дермы и более глубокой ретикулярной дермы. Сосудистые петли папиллярного дермы обеспечивают эпидермис питательными веществами и кислородом. Коллаген — главным образом, обнаруженный в ретикулярной дерме — является основным структурным белком в дерме, обеспечивающим его долговечность. Эластин, еще один важный структурный белок в дерме, он придает коже эластичность.

Фибробласты являются основными клетками дермы и отвечают за синтез и деградацию дермальных белков (коллаген и эластин). Другими клетками, находящимися в дерме, являются макрофаги и лимфоциты. Эти клетки являются частью иммунной системы кожи.

Гиподерма (подкожная жировая клетчатка)

Гиподерма образует основу эпидермиса и дермы и состоит прежде всего из рыхлой соединительной ткани и жира. Он содержит большие кровеносные сосуды и нервы, чем те, которые содержатся в дерме. Гиподерма служит в основном как изолятор и обеспечивает хранение энергии.

 

Все о коже — Информация для пациентов

Анатомия и физиология кожи

Кожа – наш самый большой орган, составляющий 15% от общей массы тела. Она выполняет множество функций, прежде всего защищает организм от воздействия внешних факторов физической, химической и биологической природы, от потери воды, участвует в терморегуляции. Последние научные данные подтверждают, что кожа не только обладает собственной иммунной системой, но и сама является периферическим иммунном органом.

Структура кожи

Кожа состоит из 3 слоев: эпидермиса, дермы и подкожной жировой клетчатки (ПЖК) (рис. 1). Эпидермис – самый тонкий из них, представляет собой многослойный ороговевающий эпителий. Дерма – средний слой кожи. Главным образом состоит из фибрилл структурного белка коллагена. ПЖК содержит жировые клетки – адипоциты. Толщина этих слоев может значительно варьировать в зависимости от анатомического места расположения.

Рис.1. Структура кожи

Эпидермис

Рис. 2. Эпидермис

Эпидермис – постоянно слущивающийся эпителиальный слой кожи, в котором представлены в основном из 2 типа клеток – кератиноциты и дендритные клетки. В небольшом количестве в эпидермисе присутствуют меланоциты, клетки Лангерганса, клетки Меркеля, внутриэпидермальные Т-лимфоциты. Структурно эпидермис разделяется на 5 слоев: базальный, шиповатый, зернистый, блестящий и роговой, различающиеся положением и степенью дифференцировки кератиноцитов, основной клеточной популяции эпидермиса (рис. 2).

Кератинизация. По мере дифференцировки кератиноцитов и продвижения от базального слоя до рогового происходит их кератинизация (ороговевание) – процесс, начинающийся с фазы синтеза кератина кератиноцитами и заканчивающийся их клеточной деградацией. Кератин служит строительным блоком для промежуточных филаментов. Пучки из этих филаментов, достигая цитоплазматический мембраны, формируют десмосомы, необходимые для образования прочных контактов между соседними клетками.

Далее, по мере процесса эпителиальной дифференцировки, клетки эпидермиса вступают в фазу деградации. Ядра и цитоплазматические органеллы разрушаются и исчезают, обмен веществ прекращается, и наступаетапоптозклетки, когда она полностью кератинизируется (превращается в роговую чешуйку).

Базальный слой эпидермиса состоит из одного ряда митотически активных кератиноцитов, которые делятся в среднем каждые 24 часа и дают начало новым клеткам новым клеткам вышележащих эпидермальных слоев. Они активируются только в особых случаях, например при возникновении раны. Далее новая клетка, кератиноцит, выталкивается в шиповатый слой, в котором она проводит до 2 недель, постепенно приближаясь к гранулярному слою. Движение клетки до рогового слоя занимает еще 14 дней. Таким образом, время жизни кератиноцита составляет около 28 дней.

Надо заметить, что не все клетки базального слоя делятся с такой скоростью, как кератиноциты. Эпидермальные стволовые клетки в нормальных условиях образуют долгоживущую популяцию с медленным циклом пролиферации.

Шиповатый слой эпидермиса состоит из 5-10 слоев кератиноцитов, различающихся формой, структурой и внутриклеточным содержимым, что определяется положением клетки. Так, ближе к базальному слою, клетки имеют полиэдрическую форму и круглое ядро, но по мере приближения клеток к гранулярному слою они становятся крупнее, приобретают более плоскую форму, в них появляются ламеллярные гранулы, в избытке содержащие различные гидролитические ферменты. Клетки интенсивно синтезируют кератиновые нити, которые, собираясь в промежуточные филаменты, остаются не связанными со стороны ядра, но участвуют в образовании множественных десмосом со стороны мембраны, формируя связи с соседними клетками. Присутствие большого количества десмосом придает этому слою колючий вид, за что он и получил название «шиповатый».

Зернистый слой эпидермиса составляют еще живые кератиноциты, отличающиеся своей уплощенной формой и большим количеством кератогиалиновых гранул. Последние отвечают за синтез и модификацию белков, участвующих в кератинизации. Гранулярный слой является самым кератогенным слоем эпидермиса. Кроме кератогиалиновых гранул кератиноциты этого слоя содержат в большом количестве лизосомальные гранулы. Их ферменты расщепляют клеточные органеллы в процессе перехода кератиноцита в фазу терминальной дифференцировки и последующего апоптоза. Толщина гранулярного слоя может варьировать, ее величина, пропорциональная толщине вышележащего рогового слоя, максимальна в коже ладоней и подошв стоп.

Блестящий слой эпидермиса (назван так за особый блеск при просмотре препаратов кожи на световом микроскопе) тонкий, состоит из плоских кератиноцитов, в которых полностью разрушены ядра и органеллы. Клетки наполнены элейдином – промежуточной формой кератина. Хорошо развит лишь на некоторых участках тела – на ладонях и подошвах.

Роговой слой эпидермиса представлен корнеоцитами (мертвыми, терминально-дифференцированными кератиноцитами) с высоким содержанием белка. Клетки окружены водонепроницаемым липидным матриксом, компоненты которого содержат соединения, необходимые для отшелушивания рогового слоя (рис.

3). Физические и биохимические свойства клеток в роговом слое различаются в зависимости от положения клетки внутри слоя, направляя процесс отшелушивания наружу. Например, клетки в средних слоях рогового слоя обладают более сильными водосвязывающими свойствами за счет высокой концентрации свободных аминокислот в их цитоплазме.

Рис. 3. Схематичное изображение рогового слоя с нижележащим зернистым слоем эпидермиса.

Регуляция пролиферации и дифференцировки кератиноцитов эпидермиса. Являясь непрерывно обновляющейся тканью, эпидермис содержит относительно постоянное число клеток и регулирует все взаимодействия и контакты между ними: адгезию между кератиноцитами, взаимодействие между кератиноцитами и мигрирующими клетками, адгезию с базальной мембраной и подлежащей дермой, процесс терминальной дифференцировки в корнеоциты. Основной механизм регуляции гомеостаза в эпидермисе поддерживается рядом сигнальных молекул – гормонами, факторами роста и цитокинами. Кроме этого, эпидермальный морфогенез и дифференцировка частично регулируются подлежащей дермой, которая играет критическую роль в поддержании постнатальной структуры и функции кожи.

Дерма

Дерма представляет собой сложноорганизованную рыхлую соединительную ткань, состоящую из отдельных волокон, клеток, сети сосудов и нервных окончаний, а также эпидермальных выростов, окружающих волосяные фолликулы и сальные железы. Клеточные элементы дермы представлены фибробластами, макрофагами и тучными клетками. Лимфоциты, лейкоциты и другие клетки способны мигрировать в дерму в ответ на различные стимулы.

Дерма, составляя основной объем кожи, выполняет преимущественно трофическую и опорную функции, обеспечивая коже такие механические свойства, как пластичность, эластичность и прочность, необходимые ей для защиты внутренних органов тела от механических повреждений. Также дерма удерживает воду, участвует в терморегуляции и содержит механорецепторы. И, наконец, ее взаимодействие с эпидермисом поддерживает нормальное функционирование этих слоев кожи.

В дерме нет такого направленного и структурированного процесса клеточной дифференцировки, как в эпидермисе, тем не менее в ней также прослеживается четкая структурная организация элементов в зависимости от глубины их залегания. И клетки, и внеклеточный матрикс дермы также подвергаются постоянному обновлению и ремоделированию.

Внеклеточный матрикс (ВКМ) дермы, или межклеточное вещество, в состав которого входят различные белки (главным образом коллаген, эластин), гликозаминогликаны, самым известным из которых является гиалуроновая кислота, и протеогликаны (фибронектин, ламинин, декорин, версикан, фибриллин). Все эти вещества секретируются фибробластами дермы. ВКМ представляет собой не беспорядочное скопление всех компонентов, а сложноорганизованную сеть, состав и архитектоника которой определяют такие биомеханические свойства кожи, как жесткость, растяжимость и упругость. К белкам ВКМ прикрепляются кератиноциты эпидермиса, которые тесно состыкованы друг с другом. Именно они и формируют плотный защитный слой кожи. Структура ВКМ также способна оказывать регулирующее влияние на погруженные в него клетки. Регуляция может быть как прямой, так и косвенной. В первом случае белки и гликозаминогликаны ВКМ непосредственно взаимодействуют с рецепторами клеток и инициируют в них специфические пути передачи сигнала.

Косвенная регуляция осуществляется посредством действия цитокинов и ростовых факторов, удерживаемых в ячейках сети ВКМ и высвобождаемых в определенный момент для взаимодействия с рецепторами клеток. Структурная сеть ВКМ подвергается ремоделированию ферментами из семейства матриксных металлопротеиназ (ММР). В частности, ММР-1 и ММР-13 инициируют деградацию коллагенов I и III типов. Плотность сети ВКМ дермы неравномерна – в папиллярном слое она более рыхлая, в ретикулярном — значительно плотнее как за счет более близкого расположения волокон структурных белков, так и за счет увеличения диаметра этих волокон.

Коллаген – один из главных компонентов ВКМ дермы. Синтезируется фибробластами. Процесс его биосинтеза сложный и многоступенчатый, в результате которого фибробласт секретирует в экстрацеллюлярное пространство проколлаген, состоящий из трех полипептидных α-цепей, свернутых в одну тройную спираль. Затем мономеры проколлагена ферментивным путем собираются в протяженные фибриллярные структуры различного типа. Всего в коже не менее 15 типов коллагена, в дерме больше всего I, III и V типов этого белка: 88, 10 и 2% соответственно. Коллаген IV типа локализуется в зоне базальной мембраны, а коллаген VII типа, секретируемый кератиноцитами, играет роль адаптерного белка для закрепления фибрилл ВКМ на базальной мембране (рис. 4). Волокна структурных коллагенов I, III и V типов служат каркасом, к которому присоединяются другие белки ВКМ, в частности коллагены XII и XIV типов. Считается, что эти минорные коллагены, а также небольшие протеогликаны (декорин, фибромодулин и люмикан) регулируют формирование структурных коллагеновых волокон, их диаметр и плотность образуемой сети. Взаимодействие олигомерных и полимерных комплексов коллагена с другими белками, полисахаридами ВКМ, разнообразными факторами роста и цитокинами приводит к образованию особой сети, обладающей определенной биологической активностью, стабильностью и биофизическими характеристиками, важными для нормального функционирования кожи. В папиллярном слое дермы волокна коллагена располагаются рыхло и более свободно, тогда как ее ретикулярный слой содержит более крупные тяжи коллагеновых волокон.

Рис. 4. Схематичное представление слоев кожи и распределения коллагенов разных типов.

Коллаген постоянно обновляется, деградируя под действием протеолитических ферментов коллагеназ и замещаясь вновь синтезированными волокнами. Этот белок составляет 70% сухого веса кожи. Именно коллагеновые волокна «держат удар» при механическом воздействии на нее.

Эластин формирует еще одну сеть волокон в дерме, наделяя кожу такими качествами, как упругость и эластичность. По сравнению с коллагеном эластиновые волокна менее жесткие, они скручиваются вокруг коллагеновых волокон. Именно с эластиновыми волокнами связываются такие белки, как фибулины и фибриллины, с которыми, в свою очередь, связывается латентный TGF-β-связывающий белок (LTBP). Диссоциация этого комплекса приводит к высвобождению и к активации TGF-β, самого мощного из всех факторов роста. Он контролирует экспрессию, отложение и распределение коллагенов и других матриксных белков кожи. Таким образом, интактная сеть из волокон эластина служит депо для TGF-β.

Гиалуроновая кислота (ГК) представляет собой линейный полисахарид, состоящий из повторяющихся димеров D-глюкуроновой кислоты и N-ацетилглюкозамина. Количество димеров в полимере варьирует, что приводит к образованию молекул ГК разного молекулярного веса и длины — 1х105-107 Да (2-25 мкм), оказывающих, соответственно, различный биологический эффект.

ГК — высокогидрофильное вещество, влияющее на движение и распределение воды в матриксе дермы. Благодаря этому ее свойству наша кожа в норме и в молодости обладает высоким тургором и сопротивляемостью механическому давлению.

ГК с легкостью образует вторичные водородные связи и внутри одной молекулы, и между соседними молекулами. В первом случае они обеспечивают формирование относительно жестких спиральных структур. Во втором – происходит ассоциация с другими молекулами ГК и неспецифическое взаимодействие с клеточными мембранами, что приводит к образованию сети из полимеров полисахаридов с включенными в нее фибробластами. На длинную молекулу ГК, как на нить, «усаживаются» более короткие молекулы протеогликанов (версикана, люмикана, декорина и др.), формируя агрегаты огромных размеров. Протяженные во всех направлениях, они создают каркас, внося вклад в стабилизацию белковой сети ВКМ и фиксируя фибробласты в определенном окружении матрикса. В совокупности все эти свойства ГК наделяют матрикс определенными химическими характеристиками – вязкостью, плотностью «ячеек» и стабильностью. Однако сеть ВКМ является динамической структурой, зависящей от состояния организма. Например, в условиях воспаления агрегаты ГК с протеогликанами диссоциируют, а образование новых агрегатов между вновь синтезированными молекулами ГК (обновляющимися каждые 3 дня) и протеогликанами блокируется. Это приводит к изменению пространственной структуры матрикса: увеличивается размер его ячеек, меняется распределение всех волокон, структура становится более рыхлой, клетки меняют свою форму и функциональную активность. Все это сказывается на состоянии кожи, приводя к снижению ее тонуса.

Помимо регуляции водного баланса и стабилизации ВКМ, ГК выполняет важную регуляторную роль в поддержании эпидермального и дермального гомеостаза. ГК активно регулирует динамические процессы в эпидермисе, включая пролиферацию и дифференцировку кератиноцитов, окислительный стресс и воспалительный ответ, поддержание эпидермального барьера и заживление раны. В дерме ГК также регулирует активность фибробластов и синтез коллагена. Ремоделируя матрикс, ГК управляет функционированием клеток в матриксе, влияя на их доступность для различных факторов роста и изменяя их функциональную активности. От действия ГК зависит миграция клеток и иммунный ответ в ткани. Таким образом, изменения в распределении, организации, молекулярном весе и метаболизме ГК имеют значимые физиологические последствия.

Фибробласты представляют собой основной тип клеточных элементов дермы. Именно эти клетки отвечают за продукцию ГК, коллагена, эластина, фибронектина и многих других белков межклеточного матрикса, необходимых для формирования соединительной ткани. Фибробласты в различных слоях дермы различаются и морфологически, и функционально. От глубины их залегания в дерме зависит не только количество синтезируемого ими коллагена, но и соотношение типов этого коллагена, например I и III типов, а также синтез коллагеназы: фибробласты более глубоких слоев дермы производят меньшее ее количество. Вообще, фибробласты – очень пластичные клетки, способные менять свои функции и физиологический ответ и даже дифференцироваться в другой тип клеток в зависимости от полученного стимула. В роли последнего могут выступать и сигнальные молекулы, синтезированные соседними клетками, и перестройка окружающего ВКМ.

Подкожно-жировая клетчатка

Подкожно-жировая клетчатка, или гиподерма, — самый нижний слой кожи, располагается под дермой. Состоит из жировых долек, разделенных между собой соединительнотканными септами, содержащими коллаген и пронизанными крупными сосудами. Главными клетками жировых долек являются адипоциты, количество которых варьирует в различных областях тела. В настоящее время ПЖК рассматривают не только как энергетическое депо, но и как эндокринный орган, адипоциты которого участвуют в выработке ряда гормонов (лептина, адипонектина, резистина), цитокинов и медиаторов, оказывающих влияние на метаболизм, чувствительность к инсулину, функциональную активность репродуктивной и иммунной систем.

Гистология, дерма — StatPearls — NCBI Bookshelf

Введение

Дерма — это слой соединительной ткани, зажатый между эпидермисом и подкожной тканью. Дерма представляет собой волокнистую структуру, состоящую из коллагена, эластической ткани и других внеклеточных компонентов, включая сосудистую сеть, нервные окончания, волосяные фолликулы и железы. Роль дермы заключается в поддержке и защите кожи и более глубоких слоев, помощи в терморегуляции и улучшении чувствительности. Фибробласты являются первичными клетками в дерме, но гистиоциты, тучные клетки и адипоциты также играют важную роль в поддержании нормальной структуры и функции дермы.

Структура

Дерма представляет собой слой соединительной ткани мезенхимального происхождения, расположенный глубоко в эпидермисе и поверхностно по отношению к подкожно-жировому слою.[1] Состав дермы преимущественно волокнистый, состоящий как из коллагеновых, так и из эластических волокон. Между волокнистыми компонентами находится аморфное внеклеточное «основное вещество», содержащее гликозаминогликаны, такие как гиалуроновая кислота, протеогликаны и гликопротеины.

Дерма делится на два слоя: сосочковая дерма и ретикулярная дерма. Сосочковая дерма – это поверхностный слой, лежащий глубоко в эпидермисе. Сосочковая дерма состоит из рыхлой соединительной ткани с большим количеством сосудов. Ретикулярный слой — это глубокий слой, образующий толстый слой плотной соединительной ткани, который составляет основную часть дермы.

Коллаген является основным компонентом дермы. В частности, коллаген типа I и типа III встречается в изобилии. Эластические волокна также играют важную структурную роль в дерме. Эластические волокна состоят из микрофибрилл эластина и фибриллина. В отличие от коллагена, биохимическая конфигурация эластина обеспечивает скольжение, растяжение и скручивание волокон.[2] Ретикулярная дерма состоит из толстых эластических волокон. Два подтипа эластических волокон заслуживают дальнейшего обсуждения: элауниновые и окситалановые волокна [3]. Элауниновые волокна представляют собой горизонтально расположенные эластические волокна, находящиеся вблизи соединения сосочкового и ретикулярного слоя дермы. Окситалановые волокна представляют собой перпендикулярные эластичные волокна, находящиеся в сосочковом слое дермы.[4]

Дерма содержит кровеносные сосуды, нервные окончания, волосяные фолликулы и железы. В соединительной ткани дермы обнаружено много типов клеток, включая фибробласты, макрофаги, адипоциты, тучные клетки, клетки Шванна и стволовые клетки.[5] Фибробласты являются основными клетками дермы. Тучные клетки обычно находятся вокруг кожных капилляров.

Функция

Поддержка и защита кожи

Структура дермы обеспечивает основу из соединительной ткани для прочности, гибкости и защиты более глубоких анатомических структур. Коллаген и внеклеточные компоненты, такие как гиалуроновая кислота, укрепляют кожу и облегчают закрепление эпидермиса через полудесмосомы и другие компоненты зоны адгезивной базальной мембраны (BMZ).[6] Окситалановые волокна также могут играть роль в закреплении эпидермиса. Эластичная ткань также помогает поддерживать кожу и обеспечивает гибкость. Кровеносные сосуды в дерме имеют решающее значение для поддержания эпидермиса и эпидермальных придатков. Питательные вещества через кровь поддерживают эпидермис, волосяные фолликулы и потовые железы. Сосудистая сеть позволяет дерме принимать воспалительную реакцию посредством рекрутирования нейтрофилов, лимфоцитов и других воспалительных клеток. Кожное кровоснабжение также играет роль в регуляции температуры, обсуждаемой ниже.

Терморегуляция

Вазоактивные кожные сосуды регулируют температуру тела. Специализированные структуры, называемые гломусными тельцами, также принимают участие в терморегуляции посредством формирования атриовентрикулярного шунта. [7] Гломусные тельца представляют собой комплексы гломусных клеток, сосудов и гладкомышечных клеток, которые преобладают в пальцах, ладонях и подошвах.[8] Хотя эккринные потовые железы часто находятся в дерме, они представляют собой происходящие из эктодермы эпидермальные придатки, которые инвагинируют в более глубокие ткани дермы и подкожный слой.[9]]

Сенсация

Несколько механорецепторов присутствуют в дерме. Нервные окончания в дерме окружают волосяные фолликулы. Эти нервные окончания ощущают движение волос и действуют как механорецепторы, позволяя ощущениям выходить за пределы поверхности кожи. Рецепторы глубокого давления также существуют. Тельца Пачини представляют собой большие пластинчатые овоидные структуры, находящиеся в глубоких слоях дермы, и они обеспечивают глубокое давление и ощущение вибрации. Тельца Мейснера, расположенные в дермальных сосочках сосочкового слоя дермы, реагируют на низкочастотные раздражители. Тельца Мейснера сосредоточены в голой (безволосой) коже. [10]

Клетки дермы и их функции

Дерма содержит много типов клеток. Фибробласты, основная клетка дермы, отвечают за синтез коллагена, эластических и ретикулярных волокон и материала внеклеточного матрикса. Гистиоциты представляют собой тканевые макрофаги, присутствующие в соединительной ткани, которые помогают иммунной системе. Тучные клетки представляют собой воспалительные клетки, расположенные в периваскулярных областях дермы. Тучные клетки секретируют вазоактивные и провоспалительные медиаторы, важные для воспалительных реакций, ремоделирования коллагена и заживления ран.[11] Кожные адипоциты представляют собой популяцию клеток, отличную от подкожной жировой ткани. Кожные адипоциты не только обеспечивают изоляцию и накопление энергии, но также помогают в регенерации волосяных фолликулов и заживлении ран.[12][13]

Подготовка тканей

Дерму исследуют с помощью стандартной биопсии кожи. Образец ткани следует сначала зафиксировать формалином, чтобы сохранить структуру ткани. После фиксации образец обезвоживают спиртом (например, этанолом) для удаления воды. Затем спиртовой агент очищают с помощью ксилола. После этого образец ткани заливают в парафин. После затвердевания парафиновой среды микротом нарезает образец. Образец ткани может быть окрашен в соответствии с протоколами окрашивания гематоксилином и эозином (H&E).

Гистохимия и цитохимия

Иммунофлуоресценция образцов тканей является важным диагностическим инструментом при аутоиммунных заболеваниях с образованием пузырей, таких как буллезный пемфигоид и герпетиформный дерматит. Например, линейное отложение иммуноглобулина G (IgG) и комплемента (C3) вдоль дермоэпидермального перехода характерно для буллезного пемфигоида. Зернистые отложения IgA в дермальных сосочках характерны для герпетиформного дерматита.

Светильник для микроскопии

Световой микроскопический анализ окрашенных гематоксилин-эозином образцов определяет границы эпидермиса, дермы и подкожно-жировой клетчатки. Эпидермис легко визуализируется благодаря наличию базофильных кератиноцитов. Сканируя образец ткани, можно оценить чередующиеся дермальные сосочки и сетчатые гребни. Дермальные сосочки представляют собой выпячивания соединительной ткани дермы в эпидермальный слой. Гребни Рете – это расширения эпидермиса в дермальный слой. Этот волнообразный рисунок более заметен на толстой коже рук и ладоней. Четкой границы между папиллярной и ретикулярной дермой нет. Коллагеновые узоры в основном горизонтальные. Поверхностная папиллярная дерма содержит более тонкие эластические волокна по сравнению с более толстыми эластическими волокнами ретикулярной дермы. Сосочковая дерма состоит из рыхлой соединительной ткани (LCT) и сильно васкуляризирована. Ретикулярная дерма показывает толстые пучки коллагена и формирует основную часть дермального слоя.

Волосяные фолликулы, железы и протоки можно увидеть по всему эпидермису, дерме и гиподерме. Изображение с большим увеличением может дополнительно различить сальные, апокриновые и эккринные потовые железы. При световой микроскопии также можно различить тельца Мейснера и тельца Пачини. Тельца Пачини в глубокой дерме или гиподерме имеют луковичный вид на поперечном срезе. Тельца Мейснера видны в дермальных сосочках в виде продолговатых структур с нейронами в спиральной ориентации, окруженными фиброзной капсулой.

Поляризационная световая микроскопия полезна при диагностике болезней отложений, таких как амилоидоз и подагра. Образцы тканей, окрашенные красителем Конго красный, можно исследовать в поляризованном свете, что дает характерное яблочно-зеленое двойное лучепреломление белковых отложений при амилоидозе.[15] Точно так же микроскопия в поляризованном свете используется для дифференциации кристаллов уратов и отложений кальция.[16]

Электронная микроскопия

Электронная микроскопия (ЭМ) может использоваться для визуализации ультраструктурных особенностей кожи. Что наиболее важно, ЭМ использовалась для визуализации зоны базальной мембраны дермоэпидермального перехода. На ЭМ показаны ультраструктурные компоненты полудесмосом, светлой пластинки (LL), плотной пластинки (LD) и различных якорных фибрилл.[17]

Патофизиология

Существует множество заболеваний, поражающих кожу. Следующее обсуждение описывает некоторые распространенные и необычные заболевания, поражающие дерму. Это обсуждение не является всеобъемлющим, но демонстрирует важность понимания нормальной структуры и функции

Генетические заболевания могут влиять на структуру и функцию кожи. Синдром Элерса-Данлоса представляет собой группу генетических заболеваний соединительной ткани, вызванных различными мутациями коллагена. Мутации в дермальном коллагене приводят к гипермобильности и хрупкости кожи. Несовершенный остеогенез — это генетическое заболевание коллагена I типа, вызывающее снижение коллагена дермы и нарушение эластичности кожи.[18] Синдром Марфана — еще одно генетическое заболевание, вызванное дефектом Ген FBN1 , кодирующий белок фибриллин-1. Хотя кожные жалобы не требуются для постановки диагноза, пациенты склонны к развитию растяжек (растяжек) из-за фаз быстрого роста в подростковом возрасте. [19] Эти три генетических нарушения, наряду с другими наследственными заболеваниями, могут изредка вызывать реактивный перфорантный серпингозный эластоз, при котором трансэпителиальная элиминация эластических волокон клинически проявляется в виде папул кольцевидной или серпигинозной формы.[20]

Синдром Кушинга, хроническое использование глюкокортикоидов и беременность являются другими состояниями, вызывающими растяжки. Глюкокортикоиды ингибируют фибробласты, тем самым нарушая синтез коллагена и материала ВКМ. Гистология растяжек выявляет уплощение эпидермиса с потерей сетчатых гребней и изменениями в строении пучков коллагена в сочетании с дегенерацией эластина во всей дерме.[21]

Повышенная активность фибробластов связана со многими кожными заболеваниями. Миофибробласты, экспрессирующие альфа-актин гладких мышц ( a -SMA), участвуют как в гипертрофических рубцах, так и в келоидах.[22][23] Необходимо тщательное гистопатологическое исследование, чтобы дифференцировать келоиды, гипертрофические рубцы, дерматофибромы, выбухающую дерматофибросаркому и склеродермию из-за сходных гистопатологических результатов [24]. Склерозирующий лихен — это воспалительное заболевание, связанное с нарушением функции фибробластов в папиллярной дерме, вызывающее фиброз поверхностной дермы и эпидермиса.[25] Acanthosis nigricans возникает в результате усиления передачи сигналов рецептора фактора роста, вызывающего пролиферацию эпидермальных кератиноцитов и дермальных фибробластов, что приводит к гиперкератозу и папилломатозу («пики и впадины») при гистопатологии.[26][27] Исследователи также наблюдали постоянную активацию фибробластов в дерме при морфее и нефрогенном системном фиброзе.[28]

Старение и хроническое пребывание на солнце могут ослабить дерму. Солнечный эластоз возникает из-за хронического воздействия ультрафиолетового (УФ) излучения, что приводит к повреждению эластичных волокон. Гистология выявляет базофильную дегенерацию эластических волокон в дерме.[29] Уменьшение соединительной ткани с возрастом, обычно с сопутствующим УФ-повреждением, вызывает актиническую пурпуру (то есть старческую пурпуру), когда дерма не может поддерживать свою сосудистую сеть. В результате незначительная травма может привести к экстравазации крови.[30] Подобные проявления могут наблюдаться у хронических пользователей глюкокортикоидов. Гломусные опухоли также могут возникать в дерме и более глубоких тканях, особенно в пальцах и ладонях, где сосредоточены гломусные тела.[31]

Крапивница представляет собой воспалительный дерматоз, характеризующийся гиперпроницаемостью сосудов, вызывающий поверхностный отек кожи с последующим расширением лимфатических сосудов. Патогенез крапивницы часто включает дегрануляцию тучных клеток и IgE-зависимые пути, но не во всех случаях.[32] Мастоцитоз описывает спектр редких заболеваний, связанных с увеличением количества тучных клеток в коже и других органах. Пигментная крапивница является наиболее распространенной кожной формой мастоцитоза и преимущественно возникает в детском возрасте.[33] Гранулематозные заболевания, такие как саркоидоз, кольцевидная гранулема, липоидный некробиоз и микобактериальные инфекции (туберкулез, лепра), поражают гистиоциты в дерме. Mycobacterium leprae  заражает шванновские клетки периферических нервов, что приводит к снижению или отсутствию кожной чувствительности при проказе.[34] Лимфоцитарная инфильтрация дермы вызывает такие заболевания, как полиморфная световая сыпь, распространенный светочувствительный дерматоз.[35] Кожные проявления гематологического злокачественного новообразования, такие как кожная лейкемия, также включают лейкоцитарную инфильтрацию в слои кожи. Синдром Свита – это редкое состояние связанное с нейтрофилией и нейтрофильной инфильтрацией ретикулярной дермы.[36] Другие нарушения связаны с отложением инородного материала в дерме, например, холестерина при ксантелазме и белковых фибрилл при амилоидозе.[37]

Ожоги и язвы важно учитывать, поскольку глубина ожога или поражения раны влияет на диагностику и лечение пациента. Ожоги частичной толщины, также известные как ожоги второй степени, разрушают эпидермис и распространяются на дерму.[38] Точно так же пролежни стадии II, как описано NPUAP, обнажают дерму.

Клиническое значение

Клиническое значение микроанатомии и функции дермы — обширная и сложная тема. Ниже приведен краткий перечень заболеваний, поражающих дерму. Обратите внимание, что многие из этих заболеваний могут поражать другие кожные слои и органы тела. Понимание нормальной анатомии и физиологии дермы имеет первостепенное значение для борьбы с кожными проявлениями заболеваний, перечисленных ниже.

Структурные расстройства

  • Структурные нарушения дермы включают наследственные и приобретенные заболевания коллагена, эластической ткани и фибробластов.

    • Solar elastosis

    • Actinic, or senile, purpura

    • Striae

    • Scars, hypertrophic scars, and keloids

    • Burns or wounds (e.g., puncture or laceration)

    • Выступающая дерматофиброма и дерматофибросаркома

    • Morphea

    • Нефрогенный системный фиброз

    • Генетические заболевания (например, синдром EHLERS-DANLOS, Остеогенез, и синдром Марфана)

    3333333333333333333333331010 гг. Воспалительные и аутоиммунные заболевания

    • Аутоиммунные волдыри (например, герпетиформный дерматит)

    • Лекарственная сыпь

    • Гранулематозная болезнь (например, саркоидоз, кольцевидная гранулема), инфекция0005

    • Lichen sclerosis

    • Leukemia cutis

    • Mastocytosis (e.g., urticaria pigmentosa)

    • Polymorphous light eruption

    • Sweet syndrome

    • Urticaria and eczematous dermatitis

    Нарушения отложения

    Контрольные вопросы

    • Доступ к бесплатным вопросам с несколькими вариантами ответов по этой теме.

    • Прокомментируйте эту статью.

    Рисунок

    Иллюстрация клеток эпидермиса. Роговой слой, блестящий слой, зернистый слой, шиповатый слой, базальный слой, дерма. Предоставлено Челси Роу. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 20 ноября 2020 г. Анатомия, кожа (покровы) [PubMed: 28723009]

    2.

    Грин Э.М., Мэнсфилд Дж.К., Белл Дж.С., Уинлав К.П. Строение и микромеханика эластической ткани. Интерфейс Фокус. 06 апреля 2014 г.; 4(2):20130058. [Бесплатная статья PMC: PMC3982448] [PubMed: 24748954]

    3.

    Cotta-Pereira G, Guerra Rodrigo F, Bittencourt-Sampaio S. Окситалан, элаунин и эластичные волокна в коже человека. Джей Инвест Дерматол. 1976 март; 66(3):143-8. [PubMed: 1249442]

    4.

    Уитто Дж., Ли К., Урбан З. Сложность биогенеза эластических волокон в коже — перспектива клинической неоднородности кожного лакса. Опыт Дерматол. 2013 фев; 22 (2): 88-92. [Бесплатная статья PMC: PMC3556375] [PubMed: 23088642]

    5.

    Prost-Squarcioni C, Fraitag S, Heller M, Boehm N. [Функциональная гистология дермы]. Энн Дерматол Венерол. 2008 г., январь; 135 (1 часть 2): 1S5-20. [PubMed: 18442658]

    6.

    Хашми С., Маринкович М. П. Молекулярная организация зоны базальной мембраны. Клин Дерматол. 2011 г., июль-август; 29(4):398-411. [PubMed: 21679867]

    7.

    Sethu C, Sethu AU. Гломусная опухоль. Энн Р. Колл Surg Engl. 2016 янв;98(1):e1-2. [Бесплатная статья PMC: PMC5234378] [PubMed: 26688416]

    8.

    Friske JE, Sharma V, Kolpin SA, Webber NP. Внепальцевая гломусная опухоль: редкая этиология образования мягких тканей запястья. Radiol Case Rep. 2016 Sep;11(3):195-200. [Бесплатная статья PMC: PMC4996901] [PubMed: 27594949]

    9.

    Cui CY, Schlessinger D. Развитие эккринных потовых желез и секреция пота. Опыт Дерматол. 2015 сен; 24 (9): 644-50. [Бесплатная статья PMC: PMC5508982] [PubMed: 26014472]

    10.

    Циммерман А., Бай Л., Гинти Д.Д. Нежные сенсорные рецепторы кожи млекопитающих. Наука. 2014 21 ноября; 346 (6212): 950-4. [Бесплатная статья PMC: PMC4450345] [PubMed: 25414303]

    11.

    Wilgus TA, Wulff BC. Значение тучных клеток в рубцевании кожи. Adv Wound Care (Нью-Рошель). 2014 01 апреля; 3 (4): 356-365. [PMC бесплатная статья: PMC3985512] [PubMed: 24757590]

    12.

    Кругликов И.Л., Шерер П.Е. Кожные адипоциты: от неактуальности к метаболическим мишеням? Тенденции Эндокринол Метаб. 2016 янв; 27(1):1-10. [Бесплатная статья PMC: PMC4698208] [PubMed: 26643658]

    13.

    Driskell RR, Jahoda CA, Chuong CM, Watt FM, Horsley V. Определение кожной жировой ткани. Опыт Дерматол. 2014 сен; 23 (9): 629-31. [Бесплатная статья PMC: PMC4282701] [PubMed: 24841073]

    14.

    Джиндал А., Рао Р., Бхогал Б.С. Передовые диагностические методы при аутоиммунных буллезных заболеваниях. Индийский Дж. Дерматол. 2017 май-июнь;62(3):268-278. [Бесплатная статья PMC: PMC5448261] [PubMed: 28584369]

    15.

    Lee DY, Kim YJ, Lee JY, Kim MK, Yoon TY. Первичный локализованный кожный узелковый амилоидоз после местной травмы. Энн Дерматол. 2011 ноябрь; 23 (4): 515-8. [Бесплатная статья PMC: PMC3229950] [PubMed: 22148024]

    16.

    Гавирия Дж.Л., Ортега В.Г., Гаона Дж., Мотта А., Медина Барраган О.Дж. Необычные дерматологические проявления подагры: обзор литературы и клинический случай. Plast Reconstr Surg Glob Open. 2015 июль;3(7):e445. [Бесплатная статья PMC: PMC4527619] [PubMed: 26301134]

    17.

    Юрченко П.Д., Паттон Б.Л. Механизмы развития и патогенеза сборки базальной мембраны. Курр Фарм Дез. 2009;15(12):1277-94. [Бесплатная статья PMC: PMC2978668] [PubMed: 19355968]

    18.

    Хансен Б., Джемек ГБ. Механические свойства кожи при несовершенном остеогенезе. Арка Дерматол. 2002 июль; 138 (7): 909-11. [PubMed: 12071818]

    19.

    Пепе Г., Джусти Б., Стички Э., Аббате Р., Генсини Г.Ф., Нистри С. Синдром Марфана: текущие перспективы. Приложение Clin Genet. 2016;9: 55-65. [Бесплатная статья PMC: PMC4869846] [PubMed: 27274304]

    20.

    Lee SH, Choi Y, Kim SC. Серпигинозный перфорантный эластоз. Энн Дерматол. 2014 фев; 26 (1): 103-6. [Статья PMC бесплатно: PMC3956773] [PubMed: 24648695]

    21.

    Уд-Дин С., МакДжордж Д., Баят А. Местное лечение растяжек (растяжек): профилактика и терапия красных и белых стрий. J Eur Acad Dermatol Venereol. 2016 фев; 30 (2): 211-22. [Бесплатная статья PMC: PMC5057295] [PubMed: 26486318]

    22.

    Баум Дж., Даффи Х.С. Фибробласты и миофибробласты: о чем речь? J Cardiovasc Pharmacol. 2011 Апрель; 57 (4): 376-9. [Бесплатная статья PMC: PMC3077448] [PubMed: 21297493]

    23.

    Lee JY, Yang CC, Chao SC, Wong TW. Гистопатологический дифференциальный диагноз келоидного и гипертрофического рубца. Am J Дерматопатол. 2004 окт; 26 (5): 379-84. [PubMed: 15365369]

    24.

    Jumper N, Paus R, Bayat A. Функциональная гистопатология келоидной болезни. Гистол Гистопатол. 2015 Сен;30(9)): 1033-57. [PubMed: 252]

    25.

    Наир Пенсильвания. Вульварный склерозирующий и атрофический лихен. J Здоровье среднего возраста. 2017 апрель-июнь;8(2):55-62. [Бесплатная статья PMC: PMC5496281] [PubMed: 28706405]

    26.

    Пури Н. Изучение патогенеза черного акантоза и его клинических последствий. Индийский Дж. Дерматол. 2011 ноябрь; 56(6):678-83. [Бесплатная статья PMC: PMC3276896] [PubMed: 22345770]

    27.

    Brady MF, Rawla P. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 9 августа., 2021. Черный акантоз. [PubMed: 28613711]

    28.

    Пьера-Веласкес С., Лунева Н., Фертала Дж., Вермут П.Дж., Дель Гальдо Ф., Хименес С.А. Стойкая активация дермальных фибробластов у пациентов с гадолиний-ассоциированным нефрогенным системным фиброзом. Энн Реум Дис. 2010 ноябрь;69(11):2017-23. [Бесплатная статья PMC: PMC6530471] [PubMed: 20570839]

    29.

    Heng JK, Aw DC, Tan KB. Солнечный эластоз в папулезной форме: редко, ошибочно. Деловой представитель Дерматол. 2014 Январь; 6 (1): 124-8. [Бесплатная статья PMC: PMC4036135] [PubMed: 24926253]

    30.

    Сейли Р.И. Лечение актинической пурпуры. J Clin Эстет Дерматол. 2017 июнь;10(6):44-50. [Бесплатная статья PMC: PMC5605207] [PubMed: 28979656]

    31.

    Mravic M, LaChaud G, Nguyen A, Scott MA, Dry SM, James AW. Клинический и гистопатологический диагноз гломусной опухоли: стационарный опыт 138 случаев. Международный Дж. Сург Патол. 2015 май; 23(3):181-8. [Бесплатная статья PMC: PMC4498398] [PubMed: 25614464]

    32.

    Дьякок С.Дж. Подход к больному с крапивницей. Клин Эксп Иммунол. 2008 г., август; 153 (2): 151–61. [Бесплатная статья PMC: PMC2492902] [PubMed: 18713139]

    33.

    Макри А., Кук С. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 11 августа 2021 г. Пигментная крапивница. [PubMed: 29494109]

    34.

    Бхат Р.М., Пракаш С. Лепра: обзор патофизиологии. Междисциплинарная перспектива Infect Dis. 2012;2012:181089. [Бесплатная статья PMC: PMC3440852] [PubMed: 22988457]

    35.

    Oakley AM, Ramsey ML. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 11 августа 2021 г. Полиморфное извержение света. [PubMed: 28613636]

    36.

    Сото Р., Леви Ю., Краузе Младший. Синдром Свита и его связь с гемопоэтическими новообразованиями. Proc (Бейл Юнив Мед Цент). 2015 янв; 28 (1): 62-4. [Бесплатная статья PMC: PMC4264714] [PubMed: 25552802]

    37.

    Nair PA, Singhal R. Xanthelasma palpebrarum – краткий обзор. Clin Cosmet Investig Dermatol. 2018;11:1-5. [Бесплатная статья PMC: PMC5739544] [PubMed: 29296091]

    38.

    Шефер Т.Дж., Шимански К.Д. StatPearls [Интернет]. Издательство StatPearls; Остров сокровищ (Флорида): 11 августа 2021 г. Оценка сжигания и управление им. [PubMed: 28613492]

    39.

    Бхаттачарья С., Мишра Р.К. Пролежни: современное понимание и новые методы лечения. Индийский J Plast Surg. 2015 янв-ап;48(1):4-16. [Бесплатная статья PMC: PMC4413488] [PubMed: 25991879]

    40.

    Touart DM, Sau P. Болезни кожных отложений. Часть I. J Am Acad Dermatol. 1998 авг; 39 (2 часть 1): 149-71; викторина 172-4. [PubMed: 9704823]

    Что такое дерма?

    • Скачать PDF Копировать

    Иоланда Смит, B.Pharm. Отзыв доктора медицины Лиджи Томаса

    Дерма — это слой кожи, который находится под эпидермисом и над подкожным слоем. Это самый толстый слой кожи, состоящий из волокнистой и эластичной ткани. Таким образом, он обеспечивает прочность и гибкость кожи.

    Слои

    Дерма состоит из двух слоев: сосочкового и ретикулярного.

    Сосочковая дерма является более поверхностной из двух и находится непосредственно под эпидермальным соединением. Она относительно тонкая и состоит из рыхлой соединительной ткани, включающей:

    • Капилляры
    • Эластические волокна
    • Ретикулярные волокна
    • Коллаген

    Ретикулярная дерма представляет собой более глубокий и толстый слой дермы, лежащий над подкожным слоем кожи. Он содержит плотную соединительную ткань, в состав которой входят:

    • Кровеносные сосуды
    • Эластичные волокна (переплетенные)
    • Коллагеновые волокна (в параллельных слоях)
    • Фибробласты
    • Тучные клетки
    • Нервные окончания
    • Лимфатика

    Кроме того, компоненты в дерме окружены веществом. Он имеет гелеобразную консистенцию, поскольку содержит мукополисахариды, хондроитинсульфаты и гликопротеины.

    Типы ячеек

    Фибробласты представляют собой первичный тип клеток, присутствующих в дерме и отвечающих за производство и секрецию проколлагена и эластических волокон. Затем проколлаген катализируется ферментами с образованием коллагена, который в конечном итоге сшивается, образуя прочные параллельные слои.

    Похожие статьи

    • Как бактериальные и грибковые колонии на лицевых масках зависят от типа маски, использования и образа жизни?

    Коллаген составляет до 70% веса дермы, в основном это коллаген типа I с некоторым количеством коллагена типа III. Эластические волокна, с другой стороны, составляют менее 1% массы дермы, хотя они по-прежнему играют важную функциональную роль в сопротивлении силам, которые могут деформировать форму кожи.

    Два типа волокон связаны друг с другом мукополисахаридным гелем, через который питательные вещества и отходы могут диффундировать в другие участки ткани.

    Другие типы клеток дермы включают:

    • Тучные клетки: содержат гранулы с гистамином и другими химическими веществами, которые высвобождаются из клетки, если она нарушена или повреждена
    • Гладкомышечные клетки сосудов: отвечают за сокращение или расширение кровеносных сосудов для поддержания гомеостаза температуры тела

    Функция

    Основная роль дермы — поддерживать эпидермис и обеспечивать рост кожи. Он также играет ряд других ролей из-за наличия нервных окончаний, потовых желез, сальных желез, волосяных фолликулов и кровеносных сосудов.

    Нервные окончания в дерме способны обнаруживать прикосновение, температуру, давление и болевые раздражители. Количество нервных окончаний в разных участках кожи различно, обеспечивая разную степень чувствительности к разным участкам, с большим количеством окончаний в высокочувствительных участках.

    Потовые железы в дерме отвечают за выработку пота в ответ на определенные условия, такие как жара и стресс. Когда пот испаряется с кожи, он может помочь охладить тело для поддержания гомеостаза.

    Апокринные потовые железы, представляющие собой особый тип потовых желез, расположенных в подмышечных впадинах и в области половых органов, выделяют густой маслянистый пот, который создает характерный запах тела, когда его переваривают бактерии на коже.

    Сальные железы в дерме отвечают за секрецию кожного сала, маслянистого вещества, которое помогает сохранять кожу влажной и предотвращает проникновение посторонних веществ.

    Волосяные фолликулы в дерме производят волосы по всему телу. На разных участках кожи есть разные типы волос. Они могут играть важную роль в регулировании температуры тела, защите от травм и повышении чувствительности.

    Кровеносные сосуды в дерме переносят питательные вещества и удаляют отходы, образующиеся в результате метаболизма в дерме и эпидермисе, а также помогают регулировать температуру тела.

    В жаркой среде кровеносные сосуды расширяются, увеличивая объем крови, циркулирующей у поверхности кожи, и таким образом выделяют тепло. Наоборот, кровеносные сосуды сокращаются в ответ на холодную окружающую среду, чтобы сохранить больше тепла внутри тела.

    Ссылки

    • http://emedicine.medscape.com/article/1294744-overview#a3
    • http://www.msdmanuals.com/home/skin-disorders/biology-of-the-skin/structure-and-function-of-the-skin
    • https://www.aad.org/public/kids/skin/the-layers-of-your-skin
    • https://www.boundless.com/physiology/textbooks/boundless-anatomy-and-physiology-textbook/integumentary-system-5/the-skin-64/structure-of-the-skin-dermis-395-7489 /
    • http://www. dermnetnz.org/topics/the-structure-of-normal-skin/

    Последнее обновление: 27 февраля 2019 г.

    • Скачать PDF Копировать

    Используйте один из следующих форматов для ссылки на эту статью в своем эссе, статье или отчете:

    • APA

      Smith, Yolanda. (2019, 27 февраля). Что такое Дерма?. Новости-Мед. Получено 28 октября 2022 г. с https://www.news-medical.net/health/What-is-the-Dermis.aspx.

    • MLA

      Смит Иоланда. «Что такое Дерма?». Новости-Медицина . 28 октября 2022 г. .

    • Чикаго

      Смит, Йоланда. «Что такое Дерма?». Новости-Мед. https://www.news-medical.net/health/What-is-the-Dermis.aspx. (по состоянию на 28 октября 2022 г.).

    • Гарвард

      Смит, Йоланда. 2019. Что такое дерма? . News-Medical, просмотрено 28 октября 2022 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *